

NTK/KW/15-5839

Third Semester B. Sc. Examination

STATISTICS

Paper-I

(Statistical Methods)

Time : Three Hours]

[Max. Marks : 50

N. B. : All questions are compulsory and carry equal marks.

1. (A) Let the joint probability function of discrete random variables x and y be given by

$$f(x, y) = \begin{cases} \frac{x + 2y}{27} & \text{, } x = 0, 1, 2 \\ & \text{, } y = 0, 1, 2 \\ 0 & \text{, elsewhere} \end{cases}$$

- (i) Present the joint distribution of x and y in a bivariate table.
- (ii) Find the marginal distribution of random variables x and y .
- (iii) Find the mean and variance of random variable x .
- (iv) Derive the conditional distribution of random variable y given $x = 2$.
- (v) Calculate $E(y|x = 2)$. 10

NTK/KW/15-5839

Contd.

OR

(E) Suppose the conditional distribution of X given y is

$$f_{X/Y}(x/y) = \frac{e^{-y} y^x}{x!}, \quad x = 0, 1, 2, \dots$$

The random variable Y is continuous with marginal p.d.f.

$$f_Y(y) = e^{-y}, \quad y \geq 0$$

Find the marginal p.d.f of X .

(F) If x and y are two continuous random variables with joint p.d.f

$$f(x, y) = \begin{cases} \frac{3}{5} x(x + y), & 0 < x < 1, 0 < y < 2 \\ 0, & \text{elsewhere.} \end{cases}$$

Find :

- (i) $P(0 < x < \frac{1}{2}, 0 < y < 2)$
- (ii) Marginal density of X
- (iii) Variance of X .
- (iv) Conditional density of y given $X = x$.

$5 + 5$

2. (A) State the p.d.f of Bivariate normal distribution of a pair of random variables X and Y . Find m.g.f of it and hence find correlation coefficient between X and Y . 10

OR

(E) If random variables X_1 and X_2 follow trinomial distribution, state its p.m.f. Find its m.g.f. and hence find mean and variance of X_1 . Also find covariance between X_1 and X_2 .

According to Mendelian theory of heredity, if plants with round yellow seeds are crossbred with plants with wrinkled green seeds, the probabilities of getting a plant that produces round yellow seeds, wrinkled yellow seeds and round green seeds are respectively, $\frac{9}{16}, \frac{4}{16}, \frac{3}{16}$. What is the probability that among 9 plants three obtained true will be 4 round yellow seeds, three wrinkled yellow seeds and three round green seeds ?

10

3. (A) If X_1 and X_2 are independent standard normal variables, find the joint p.d.f. $Y_1 = X_1 - X_2$ and $Y_2 = X_1 + X_2$. Are Y_1 and Y_2 independent. How are Y_1 and Y_2 distributed ?

(B) If the joint probability distribution of X and Y given by

$$f(x, y) = \begin{cases} \frac{(x-y)^2}{7}, & x = 1, 2; y = 1, 2, 3 \\ 0, & \text{elsewhere} \end{cases}$$

(i) Write the bivariate distribution of X and y in tabular form.

(ii) If $U = x + y$ and $V = x - y$ then write bivariate probability distribution table of U and V . 5 + 5

OR

(E) Let X_1 and X_2 be independent random variables following same exponential distribution with parameter θ . Find m.g.f. of X_1 and use it to show that :

(i) $Y = X_1 + X_2$

(ii) $Z = \frac{X_1 + X_2}{2}$

follow Gamma distribution. Identify the parameters.

(F) Let there be two fair four sided dice—die 1 with face numbers 0, 1, 2, 3 and die 2 with face numbers 0, 4, 8 12.

Let X and Y be the outcomes on die 1 and die 2 respectively when these are rolled.

Derive :

- (i) The p.m. f of X and p.m.f. of Y .
- (ii) The joint p.m.f of X and Y .
- (iii) Let $w = x + y$. Derive the joint distribution of w and x .
- (iv) Show that w follows discrete uniform distribution. 5 + 5

4. (A) Define Chisquare variable with parameter n . State its p.d.f. find m.g.f. of it and hence find mean and variance. State and prove additive property of Chisquare distribution. 10

OR

(E) Define F variable. State its p.d.f. Find mean and mode of F distribution.

(F) Derive distribution of

(i) Sum of n independent Poisson variables.

(ii) Linear combination of n independent normal variables. 5 + 5

5. Solve any **Ten** questions from the following :—

(A) Let x and y have the joint p.m.f given by

		x			
		1	2	3	4
y	1	0.1	0.2	0.3	0.05
	2	0.05	0.05	0.15	0.1

Find E(Y).

(B) Show that correlation coefficient of two independent random variables X and Y is zero. 5 + 5

(C) The joint p.d.f of x and y is given by

$$f(x, y) = \begin{cases} \frac{3}{2} y^2, & 0 \leq x \leq 2, 0 \leq y \leq 1 \\ 0, & \text{elsewhere} \end{cases}$$

Check whether X and Y are stochastically independent.

(D) If the joint probability mass function of random variables X and Y given by

$$f(x, y) = \frac{2!}{x! y! (2-x-y)!} \left(\frac{1}{4}\right)^x \left(\frac{2}{4}\right)^y \left(\frac{1}{4}\right)^{2-x-y}$$

for $0 \leq x + y \leq 2$ where x and y are non negative integers. State the probability mass functions of X and Y .

(E) If a pair of random variables X and Y follows Bivariate normal distribution with parameters $\mu_x = 10$, $\mu_y = 12$, $\sigma_x^2 = 9$, $\sigma_y^2 = 16$, $\rho = 0.6$, Find $E(y/x=5)$.

(F) If a pair of random variables x and y follows Bivariate normal distribution, write expression for $V(y/x)$.

(G) What is sampling distribution ?

(H) State R command for drawing a random sample of size 20 from normal population with mean 50 and standard deviation 3.

(I) If $X_1 \sim B(n_1, p)$ and $X_2 \sim B(n_2, p)$. What is the distribution of $X_1 + X_2$?

(J) Show that student's t can be regarded as a particular case of Fisher's t .

(K) State the relationship between variables t and F .

(L) Show that t distribution is symmetric.

$$1 \times 10 = 10$$